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Optimal Sequential Designs for On-Une Item Estimation

Executive Summary

The workhorses of modem test theory are so-called Item

characteristic curves (ICC's); these are mathematical functions which

describe how the probability of correctly answering a test question

changes with ability. In CAT testing, these ICC's are used both to select

appropriate problems for an examinee and to score the examinee's

performance on the selected problems.

The ICC's for a test's problems are not known, but must be

estimated from data. Typically, such data are collected before the test Is

used operationally in what is known as a "calibration study'. In the case of

CAT-ASVAB, calibration data were collected by administering subsets of

the questions via paper-and-pencil test booklets to 50,000 applicants for

military service In Military Entrance Processing Stations (MEPS).

Such off-line calibration studies have several shortcomings: First,

they are expensive to conduct in that they make heavy demands on an

overburdened MEPS command and sometimes prevent same-day

processing, necessitating that applicants be billeted In hotels. Second, the

performance data are suspect, since examinees are told that their

performance on the non-operational problems will not "count". Third, the

process Is Inefficient In that the random sample of examinees given a

particular test question, Is usually not the optimal sample for estimating that

question's ICC.

It Is widely held that the answer to the shortcomings of "off-line"

calibration Is "on-line" calibration. In on-line calibration one gathers the
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needed data to estimate ICCs by unobtrusively seeding a small number of

non-operational items into an applicant's operational CAT test. If the

number of additional Items given to each applicant is small, data collection

Is virtually cost free. If an applicant cannot distinguish non-operational

Items from operational items, the performance data will better reflect his/her

capabilities. And, If the non-operational items are embedded in an

operational test which is administered via computer, in principle one should

not be limited to collecting data from random samples, but could employ

some optimal sample design strategy. This work seeks to develop the

wherewithal for dynamically constructing optimal samples.

One can think of the optimal sample design problem in the following

terms. For concreteness suppose that we have 500 new test problems to

be calibrated and that each day 1000 applicants are tested In the MEPS.

Further suppose that we can tolerate at most 2 non-operational items

embedded In each applicant's operational test. Since each applicant can

be assigned 2 items from a set of 500 items, there are 500 choose 2, or

124,750, potential allocations for each applicant. Since there are 1000

applicants, the number of potential allocations overall is astronomical (or

to be exact 1.2475E1 004, where xEn means x multiplied by 10 to the

power n). The sample design problem is the problem of allocating the

available applicants to the non-operational Items in an optimal manner.

If one Is to improve upon random allocation, one needs three

elements: (a) a relevant basis on which to distinguish the objects to be

allocated (in this case the applicants), (b) an objective function which

orders the set of potential allocations with respect to some measure of
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quality, and (c) an efficient algorithm for "searching" the rather large space

of potential allocations.

This research developed all three elements. (a) Since examinee

abilities are not known, the applicants were distinguished by the maximum-

likelihood estimates of their ability from their operational CAT test. (b) The

objective function was based on the determinant of the Fisher information

matrix for the parameters of the ICC. And, (c) a branch and bound

algorithm was used to search the space of potential allocations for the set

which is optimal.

The need for several approximations accompany adoption of an

objective function based on the Fisher information matrix. First, to compute

the Fisher information matrix, one must know the ICC. This requirement

was circumvented by employing a sequential optimization strategy in which

initial ICC estimates were Iteratively refined as more and more data were

gathered. The method developed for updating ICC estimates involved

modeling the measurement error of the CAT ability estimate and using this

model to modify the maximum likelihood estimate of the item parameters.

Without this modification the usual MLE is biased.

Optimal allocation via Fisher information also requires that abilities

be known. In this case maximum-likelihood estimates of ability were used.

The maximum-likelihood estimates are based on the data from the

operational portion of the CAT.

Monte Carlo data suggest that the consequences of these

approximations were not severe. Even without knowledge of the actual

ICC's or abilities, the approach proved to be at least 90% as efficient as the

theoretically optimal design in all cases studied. Designs based on random
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allocation of applicants to items were less than 30% as efficient as the

sequential design algorithm developed here.
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Optimal Sequential Designs for On-Une Item Estimation

Abstract

Replenishing item pools for on-line ability testing requires innovative

and efficient data collection designs. Based on a theoretical framework for

generating exact D-optimal-designs for selecting individual examinees, and

for consistently estimating item parameters, this article presents a

sequential procedure for on-line item calibration. These procedures were

derived for general, dichotomous item response models, using Welch

(1982) for exact n-point D-optimal designs and Stefanski and Carroll

(1985) for consistent estimators. In simulations, these designs appear to

be considerably more efficient than random seeding of items. Key words:

Branch-and-boumnd, Computezed adaptve test, Exact n-point D-opimal,

Integer programminIg, Item response b'eoy Measurement errors model

On-line tes&'7g, SequenfIl design.
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Introduction

Calibration of new items Is an essential part of a testing system,

because operational Items eventually become overexposed and need

replacement. To calibrate new items for the Armed Services Vocational

Aptitude Battery (ASVAB), costly testing sessions are conducted where all

the new items are presented to examinees that have been recruited

expressly for the purpose (C. E. Davis, personal communication, March 15,

1991). The obtained data may be unreliable because the examinees know

that the test "doesn't count" and, thus, do not do their best. On-line item

calibration promises to yield more reliable data on new items at virtually no

cost. This research is concerned with the development of item calibration

procedures that take advantage of the auxiliary ability estimates supplied

by the on-line test. This will enable the procedure to select pre-specifled

ability distributions known to yield high information regarding a given item.

Researchers have recently focussed on the effect of an ability

distribution on the precision of the estimate of an item parameter.

Wingersky and Lord (1984) showed that when item and ability parameters

are estimated simultaneously, a rectangular distribution of ability, instead of

a normal distribution, reduces the standard errors of all parameters.

Studying the standard errors of the estimates of the item parameters only,

Stocking (1990) concluded that a broad distribution of ability, uniform or

bimodal, was better than a bell-shaped distribution. In addition, she

convincingly argued that even in very large samples, very little Information

may be available for calibrating some items, and that the success of a
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particular Item calibration using item response theory depends heavily on

the selection of more informative data.

The theory of optimal design is concerned with planning data

collection so that they will be as informative as possible. The general

theory of optimal design focuses on "minimizing" the variance-covarlance

matrix of the parameter estimates, or on "maximizing" the inverse of the

Fisher information matrix. A D-optimal design maximizes the determinant

of the Fisher information matrix; and, an A-optimal design minimizes the

trace of the inverse of the Fisher information matrix (Federov, 1972; and

Silvey, 1980). The criteria used in Wingersky and Lord (1984) and

Stocking (1990) are related to the theory of A-optimality.

Ford (1976) derives D-optimal designs for logistic regression

functions, also known as two-parameter logistic item response models

(Lord, 1980). He shows that discrete, two-point distributions are D-optimal,

with support points depending on the values of the item parameters.

However, optimal designs for the two-parameter logistic functions are

unstable. Sivey (1980) gives an example showing that Ford's design,

optimal for one item, may be extremely suboptimal for another item, even if

its parameters are close-by. Silvey concludes that is not practical to use a

des.,, that is maximin over a subset of candidate values for the unknown

parameters. A design is maximin if it maximizes the minimum possible

determinate of the Fisher information matrix. To overcome this problem,

Ford and Silvey (1980) study sequentially constructed designs for two-

parameter logistic models, which employ D-optimal "subdesigns" based on

current estimates of the parameters. This research will show that

sequentially constructed designs are useful for on-line item calibration.
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Ford and Silvey's sequentially constructed designs apply large

sample optimal design theory to small sample subdesigns. The

approximation of small exact designs with large sample designs is

sometimes inadequate (Welch, 1982). Recently, researchers have

developed some theory and procedures for finding optimal designs for

small samples, called optimal exact N-point designs. For linear regression

models, Welch (1982) investigated a branch-and-bound algorithm for

finding D-optimal exact N-point designs with support over discrete design

space. Also for linear regression models, Haines (1985) investigated a

simulated annealing algorithm for N-point designs with support over a

continuous design space. Additional algorithms are presented In Donev

and Atkinson (1988) and Mitchell (1974). This research will find exact N-

point designs for constructing on-line calibration samples.

In contrast to logistic regression problems, estimation of item

response models must use an estimate of the covariate instead of a true

value of the covariate. In our context, the covariate is an estimate of the

examinee's ability generated from the operational part of the on-line test.

This notion is in accordance with Stocking (1990), who notes that "a

sample could possibly be selected based on some available observed

auxiliary information." Ford and Silvey (1980) did not solve the problem of

measurement errors in the covariate when they did their study. Earlier

Federov (1972) considered the development of designs in the presence

measurement errors for the general linear model. Independently of

researchers in the field of optimal design for logistic models, Stafanski and

Carroll (1985) study the effect of measurement errors in the covanate on

the asymptotic bias of the MLE of parameters of the logistic regression
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model. They showed that the MLE is asymptotically biased, in other

words, not consistent.

Using the ability estimate for each examinee, generated by the

operational part of the on-line test, this research explores sequential D-

optimal designs that are appropriate for three-parameter and other item

response models. In addition this study presents an estimator of item

parameters using estimates of ability in place of true ability. This research

studies the relative efficiency of the normal and uniform designs. Because

the designs are compared according to the r.-optimal criterion, this

research will add to the base of research that has looked at individual

standard errors of estimates.

Elements of Item Response Theory

Item R sonse Functions

Let u. denote a response to a single item from individual i with ability

level xi, possibly multivariate. Assume that all response variables are

dichotomously scored either cofree/ ui = 1, or incorrect ui = 0. An item

response function is a function of xi, and describes the probability of

correct response of an individual with ability level x. when presented with

the item. #T= (0,j1'....M-1) be M parameters associated with the

item. The probability of a correct response follows the form P(xi;f). The

mean and variance of the parametric family are:

E(u,} = P(xi;), and (1)

a2(x.;#) =Var{uil) = P(xi;#)[1 - P(xi;#)]. (2)
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An example of a family of item response functions is the celebrated

family of three-parameter logistic response functions:

P(xi; 3) ='62 + (1 - 02)R(6 0 + /li), (3)

where R(z) Is the logistic function:
z

eR(z) =- z (4)
1l+e

Another functional form for R(z) is the normal ogive, see Lord(1980) for

references.

Throughout the remainder of this article, we will assume that the

response variables are binary and are statistically independent given the

ability level. The optimal design results of this paper can be extended to

response functions other than the three-parameter family. All that Is

necessary is that the Item response models must be differentiable In the

item parameters.

MLE of Item Characteristics

The log-likelihood function of f based on independent observations

(u ixi = 1,2,...,N)is

N
i l P(xi:#) + (1 - ui)log[1 - P(x 1  (5)

The maximum likelihood estimator (MLE), # satisfies:

N u -P~ iAl ap~i-

=Ok = (6)
8=1 (;k
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Under regularity conditions, the MLE is asymptotically normal with

mean P and varlance-covariance matrix M-'(#), where M(P) is the Fisher

information matrix with elements (mkl(#)) equal to:

N 8P(xiN A 8P(x;,f)
mkl(X;#) = o -2 (xi;) k

i=1

When the ability levels are observed with error, the MLE is an

asymptotically biased estimator of 0, or equivalently, it is not consistent.

Stefanski and Carroll (1985) suggested several modifications of the basic

MLE in the logistic regression model that tend to reduce the bias. We base

our modification on one of their suggestions. We first describe a plausible

model for the observed ability level.

Measurement error in ability level. Let x. denote the true ability of an

examinee, and let X. denote the observed ability obtained in an on-line

testing system. Let e. denote the measurement error associated with the

on-line test. Then a measurement model is

X. = x. + e.. (8)I I I

Assume Xi, xi, and ei are independent and denote the variance of (X., x.,

e . by (a XX axx, oee). Then

axx = axx + aee (9)

The reliability ratio for this measurement error model is (Fuller, 1987):

1 XX I . (10)XX a 0axx
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We will call this ratio the testre//ab #/tratA The traditional notion of test

rellablity Is associated with classical test theory. The definition of test

reliability Is relative because the variance of test scores in the population

depends on the design we wish to achieve. For a fixed measurement error

a ee, a test may perform well for a design where aXX is large. However, the

same test with the same measurement error may perform poorly for a

design where aXX is small. This notion of relative performance of test

scores is well known by test practitioners; for example, an aptitude test

developed for a general population is usually unsuited for the purpose of

selection with a cut-off score. (This is because the measurement error of

the test is not small enough to distinguish between examinees with

aptitudes just to the right or left of the cut-off score.)

It is possible to control a ee in an on-line testing environment

because aee decreases as the number of administered items Increases and

as the on-line test administers items with high information. The reliability

ratio KXX will be a tuning variable for the sequential design algorithm.

Values In the range 75% to 95% are meaningful. The quantity aXX

depends on the sample design and determines the required value of aT

for a given value of the reliability ratio according to:

0 ee =,aXX(1 - KXX). (11)

MLE modified for measurement error. Assume that the error terms

(e) in model (8) are independent normally distributed with mean 0 and

variance ae. Under this measurement error model the MLEs of P and x =

(X1, x2 .... ,xN) maximize
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Z fuiogpex.;#) + (1 - u.)Iog[1 - P(xif)

-(2cre)i 
(Xi - x ) 21 

(2

The vectors ,(x)maximizing expression (12) satisfy

N [ui - P(X i A0] 8P(X i;A)

a2(Xi;0' 11(13)

x, i = X i P2(Xl;) Or x;#f (14)

A modification of this set of equations enables an easy Implementation.

This modification replaces x1 by

[U+Il- P(X flf)]I 8P(X.; A0f15
Xj = I a2 X; 0  ee (15)

We will call the resulting estimator of P the modkt-oMLE. Stefanskl

and Carroll showed that, in logistic regression, the modified MLE reduces

asymptotic bias for known aee.

Effective sample size required for the modified MLE. Because the

data follow the Bernoulli probability model, the variance of estimators

based on maximum likelihood decreases approximately at the rate
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[NO(1-1)]- 1 , where P2 is the value of the response probability averaged

over the design values xI ,x21... xN. Thus,

S = N0(1-0) (16)

is sometimes called the effective sample size For example, N = 300, 600

and P = 0.10, the effective sample size is approximately 30 and 60.

Stefanski and Carroll's Monte Carlo study showed that the

increased variability of the modified estimators outweigh their savings in

bias and thus under perform the regular MLE for N = 300. However, for N

= 600, they showed that the modified estimator out performs the regular

MLE. They chose P = 0.10 and a reliability ratio equal to 0.75 for their

Monte Carlo study. Because they were interested in the performance of

the estimator only, they did not investigate sequentially constructed

designs and allowed the design to be observational, resulting In a normally

distributed design.

Because we expect to see P fall in the range 0.4 to 0.6, and

because we will use D-optimal designs instead of normal designs, the

modified estimator should outperform the regular MLE for an effective

sample size of no more than 60. We shall see later that, with no more than

25 per cent of the observations, a D-optimal design yields the same amount

of information as does a normal design. According to the Stefanski-Carroll

study, this Implies that a modified MLE should start to out perform the usual

MLE with an optimal design at about 0.25(60), or equivalently 15, effective

observations. For P In the range 0.4 to 0.6, 15 effective observations

translates into no more than N = 15/[(0.4)(0.61 < 63 actual observations.
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To achieve the bias reducing properties of a modified estimator, one

must control aee with equation (11). We will see that aXX will range from 1

to about 0.4 for D-optimal designs. By equation (11), this implies that a

will range from 0.1 to 0.25 for a fixed KXX equal to 0.75. This translates

into requesting the on-line test to supply estimates of ability levels with

standard errors of measurement in the range 0.31 to 0.50.

This is a reasonable request to make of an on-line test that has been

developed for a general population with normally distributed ability. To see

this, recall that the three-parameter logistic model associates with it a

population of latent ability levels, normally distributed with standard

deviation ax = 1.7 (Lord, 1980). Assume the reliability of the on-line test is

K XX = 0.97 relative to this normal population. Using (11), it is easy to

show that the variance of the measurement error is aee =

(1 - KXx)(Kxx)-laxx = (1 - 0.97)(0.97)(1.7)2 = 0.08409. Thus, if an on-

line test has reliability 0.97 for a normal population with standard deviation

1.7, then the on-line test would have been developed to supply estimates

of ability with standard errors of measurement equal to N/0.08409 = 0.29.

The value of 0.97 for the on-line reliability is the lowest value we

recommend.

Optimal Design Theory for Item Calibration

N-point optimal designs. The sampled ability level x will be

constrained to a subset I of Rk, where k is the dimension of the ability. I

will be called the design space An N-pointdes/gnis a collection of ability

levels x = (x1 ..... XN) from the design space I. The expected value of the ith
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response variable follows the response function with form Pi(xiP). For

each xi denote the M-column vector of partial derivatives as 8Pi(xi;/86 =

(.8Pi(xi;Y6)/60 ...... 9Pi(xi;A:/-91M-1)"

The design problem Is to choose x with x1 E X' i = 1 ,..., N to make

N ap(x;#) P(xi;#)T
M(x;P) = 7 -2(Nx;P) 813 (17)

i=1

as large as possible, where "large" is an appropriate attribute for a matrix.

Criteria for generating designs. There are several criteria for

generating designs, see Silvey (1980) for an exposition. We list three

criteria here. The criterion of D-optimality is the determinant of the

information matrix: det {M(x;})). Its square root Is inversely proportional to

the volume of the confidence ellipsoid for f. The criterion of A-optimality Is

the trace of the inverse of the information matrix: tr [{M(x;))-l]. It is

proportional to the average of the variances of the estimated parameters.

The criterion of srong optimality Is the partial order on matrices induced

by the condition of non-negativity: If x1 and x2 are two N-point designs

then x1 Is better than x2 in the sfrongsense if M(x 1 ;P) - M(x 2;P) Is non-

negative definite. Both the determinant and the trace functions belong to a

general class of criterion functions (0) which are necessary for sbwng

optimality: If x1 and x2 are two N-point designs such that x1 is better than

x2 in the stlngsense such that M(x 1 ;) - M(x 2;P) is non-negative definite

then O{M(xl ;})) > {M(x2;0 } .

We have Introduced the criterion of A-optimality primarily because of

its obvious relation to the studies of Wingersky and Lord (1984) and

Stocking (1990). These studies indicate that, when using a random design
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with random sampling, a rectangular distribution over ability level is better

than a normal one according to the criterion of A-optimality. We will

concentrate on the criterion of D-optimallty.

The solution to the problem of finding an N-point D-optimal design

reduces to solving the mathematical programming model:

Maximize det{M(x;))

such that

x. e 1, i = 1,...,N. (18)

This mathematical programming model has wide applicability to item

response theory. All that one needs is the Fisher information function (7)

for the targeted item response models. It can also be expanded to cover

designs for simultaneous item calibration.

AJproximate theory of D-optimal designs. Many theoretical

techniques are available in D-optimal design theory for the problem with

the criterion extended to probability distributiuns over the design space.

This is called the ,Lyfv,'t/etheory of optimal design. We derive

approximate D-optmal designs for the purpose of comparing sequential

designs, normally distributed designs, and rectangular designs.

Let us extend the criterion to probability distributions over the

design space by first considering a finite design space. Denote points of

the design spaces by the distinct values x(1).... x(r). A design will replicate

these design sites n1 ,...,nr times, respectively. We associate with an N-

point design x a probability distribution on : ?IN, which puts probability Pi

= ni/N at x(j). Let x be a random variable with distribution 'N and redefine

the information matrix associated with the 17N as:
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MQJNA)Eo 2(X;#) aP(x;#) (19)

r aP(x ;#) apQx;#)T
= p-2(x;i6) 8, = N-lM(x;#).
1=1

Now it is straight forward to define the information matrix of an arbitrary

probability distribution over a design space, as follows. Assume the usual

probability space over I. Let 77 be a probability distribution and x a random

ability level with distribution ni, define

M(7;0) = E[o "2(x;# IP(x; ) (P2;0T])

Qualfit. Sibson (1972) showed that the approximate D-optimal

problem is dual to another mathematical programming model. Sibson's

result deals with the linear model. We extend this result to non-linear

models by defining the manifold In RM induced by the design space I as

follows:

m, = (z e RM: z = [A(x;P]-lap(x;O)IM, x e 1). (21)

The set m depends on P. Sibson' result shows that the D-optimal problem

is dual to the problem of finding a minimal content ellipsoid contained in

RM centered at the origin that contains the manifold L We present this

fact not because it leads to practical solution methods but because it leads

to deep theoretical Insight about the nature of optimal designs.

Relative efficiency. To evaluate the efficacy of a given design we

introduce the notion of re/uhie eftfccy Let M*(#) be the information
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matrix of the approximate optimal design for a given value of the item

vector, . Then the relative efficiency of a design, n, is defined as

eff(1) = det{M(7;})) (22)det{M*(#}"

Ra d2m-seednoand uniform designs. An observational design

would occur if the experimenter did nothing and let the observations occur

with random ability levels. For example, practitioners sometimes assume

that the naturally occurring distribution of a unidimensional ability Is

normal. The normal distribution associated with the three-parameter

logistic model has a mean of zero and a standard deviation of 1.7. Let 0

denote the standard normal distribution. For this example r(x) = )(x/1.7).

This design occurs naturally If examinees are selected at random to receive

an experimental item. This Is known as randon-seedingof experimental

items. The rectangular or uniform design studied by Wingersky and Lord

(1984) and Stocking (1990) also can be formulated with an 1.

Algorithms for D-optimal designs. Using the two-parameter logistic

model, Ford (1976) obtained approximate D-optimal designs that have

closed formulas, see Appendix A. In general, no closed solutions to model

(18) exit. We will use Ford's approximate solutions to compare with other

designs. We will employ a search method to solve the problem (18) for N-

point designs when N Is small, which we will use to find sequentially

constructed designs. We base our method on those that have been

developed for the linear model, which we discuss now.

In case of linear statistical models, there exit several heuristic search

techniques (Federov p. 167, 1972; Welch,1982; and Haines, 1987).

Federov's algorithm Is based on gradient search, but applies to only linear

m II II II I • |



Optimal Sequential Designs for Item Estimation

Page 21

models and finds approximate, not N-point, optimal designs. Haines'

algorithm is based on simulated annealing, handles both D-optimal and A-

optimal criteria, produces N-point designs, and is simple to code. Welch's

algorithm is based on branch-and-bound search over designs confined to

a finite set of pre-specified points and finds exact N-point D-optimal

designs. Among these three algorithms, branch-and-bound search

requires the least amount of computer time for most practical problems. We

employ the branch-and-bound heuristic to find small-sample designs for

use in the sequential design scheme described in the next section. We

present the branch-and-bound search in Appendix B.

Results and Conclusion

Approximate optlimal designs for two-parameter Iogistic Items. Ford

(1976) derived a formula for approximate D-optimal designs for the two-

parameter logistic model. We list the description in Appendix A for the

design space X.= [-1, +11 and we will use this design space for the

following results. This design space corresponds to the notion of

concentrating the design to single out individuals with more informative

ability levels than would be the case with a normal distribution (Stocking,

1990).

The main characteristic of D-optimal designs is that the approximate

optimal design puts one-half its probability at each of Mvpoints. This

follows from the duality theory and the shape of the manifold in R2,

induced by the design space. To see this, note first that, for the two-

parameter logistic model M=2,

[o(x;#)]- P'(x;#) = {P(x;#)[1-P(x;})Dlt2, (23)
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hence

M = (zeR2 : z = {P(x;#)[1 -P(xf;}l/) 2 [1 ,xJT, xCl") (24)

The manifold M Is a smooth curve in R2 because the logistic model

Is Infinitely differentiable. Graphically, it resembles the curve of a smooth

"C" with ends curved back toward the origin. Analytically, the form of Its

defining equations are not elliptical. Hence, the optimal design has a two-

point distribution because the subset S touches a minimal area ellipse In

R2 centered at the origin at two points.

In Table 1, we have listed the a and b parameters of three logistic

curves along with their support points of the approximate D-optimal design

. In terms of our parametric representation, the conventional discrimination

parameter, a, and difficulty parameter, b, of the two-parameter logistic

model are:

a = 01 and b = - a10 (25)

Each set of parameters are representatives from the regions B1, B2 and B3

(A-1 to A-3). We will characterize these three sets of Item parameters as

"low," "medium," and "high" In reference to the value of the discrimination

parameter. The three values of the discrimination parameter appear to

reflect the values seen In practice. Note that the support points of the

optimal design are not found at the extreme points, but at the Interior points

of [-1, +1] in some cases.
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Table 1 about here.

In these two-parameter logistic models, we have restricted the

design space to the interval [-1, +11. If we widened the interval, the support

points for the "low" and "medium" items will no longer be the end points of

the interval. Thus optimal designs are not merely the extreme points of the

interval. This is the major feature in which optimal designs for non-linear

models are different from optimal designs of linear models. The reason for

this phenomenon Is that manifold 7& defined above, is non-linear in x.

For the three-parameter logistic model, the manifold 7l is a subset of

R3 . It does not have an elliptical surface and therefore it will touch its

minimum content ellipsoid in three points. The value of these three points

and the corresponding design probabilities are complicated and will not be

presented here.

We will not use these theoretical results in our construction of

sequential designs because we desire to obtain designs for response

models other than the two or three parameter logistic models. Also we

seek exact N-point optimal designs for which approximate optimal designs

may not fit well. However, we will use these theoretical results to compare

with some ad hoc designs, such as the normal or rectangular distribution of

ability level.

Relative efficiencies of some land= -sw2Vdeslgns for

estimating the two-parameter ogaistic response model. The relative

efficiency of a continuous design 17 for a two-parameter logistic model is

obtained from:
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M0;A )= JP(x.#)[1-P(x;p)][ X2 (x)dx. (26)
XI

In case 77 corresponds to a rectangular or normal density, the integrals may

be readily evaluated with quadrature methods.

We have determined the relative efficiencies for these two designs

for the three logistic models discussed previously (Table 2). Although the

normal design performs better than the uniform design, we note that both

the normal and uniform designs perform poorly. Indeed the best relative

efficiency that the normal design attains is only 23.56% for the item

parameters (2.3851, -. 1745). In estimating these item parameters, this

means roughly that for 100 observations from the normal design, one may

obtain the same amount of accuracy with 12 observations at -0.82 and 12

observations at 0.47.

Table 2 about here.

That the normal design performs better than the rectangular design

raises a question about the consistency of these results with those of

Wingersky and Lord (1984) and Stocking (1990). An explanation is that

we are comparing designs according t(; the criterion of D-optimality

whereas they compare designs by a criterion directly related to A-

optimality. Rectangular designs are better (worse) than normal designs

according to the criterion of A-optimality (D-optlmality). This result is not

Inconsistent with the criterion of strong optimality because both D-
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optimality and A-opt! nality criteria are necessary, but not sufficient for a

design to be strongly optimal. We have not investigated the criterion of

strong optimality for rectangular and normal designs.

Sequential Design Theory and Monte Carlo Study

Methods

Sequential designs. Because of the dependence of an optimal

design on the item parameters, it is impossible to employ the optimal

design in practice. To overcome this drawback, we sequentially construct

reasonable designs. The construction procedure collects the total sample

in small subdesigns, size n, that are n-point D-optimal for the current

estimates of the item parameters. All this takes place within the

environment of on-line tests, which provide estimates of ability levels. The

estimates of the item parameters gradually improve as the overall sample

size, N, increases. To ensure this improvement, the estimate accounts for

error in the estimated ability levels using the modified MLE (13) and (15).

We consider a simple framework for sequentially constructing a

design. We obtain a sequential design by repeatedly cycling through three

steps (Figure 1). Step one obtains responses to the item from a small

number of examinees whose abilities satisfy the design from step three.

Step one accumulates these data with prior data and obtains estimates of

the item parameters. Step three obtains a small sample design that is an

exact n-point optimal design for model (18), where the estimates of step

two substitute for f. A sequential design results in an empirical design that

will rarely equal an exact n-point D-optmal design; but will, however,

approximate the optimal design associated with the unknown iten
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parameters. We determine how well the sequential designs perform by

computing their relative efficiencies (22).

Figure 1 about here.

Simulation study. We fully describe the sequential algorithm in

Appendix C. One must fix several tuning parameters for eat.h application

of the algorithm. These tuning parameters are: n, the size of the

subdesign; N, the overall sample size or stopping time; K)<, the test

reliability (10); S, the effective sample size (16). We obtained simulations

of designs for calibrating two-parameter logistic items. We varied the tuning

parameters as follows: n = 3, 5, 15; N = 200, 400; K)O< = 0.75, 0.80, 0.85,

0.90, 0.95, 1.00; S = 1, 15, 30, a*. For brevity, we did not duplicate some

of the reliability ratios between N = 200 and 400.

We fixed the design space to be twenty points unequally spaced

along the interval [-1, +1] (Table C-1). These twenty points correspond to

ten pairs of support points for ten approximate D-optimal designs. The

items, for which these ten designs are optimal, are listed in Table C-1

under the column heading "associated items." Assuming that experimental

Items have difficulties between -1 and +1, this design space enables the

algorithm to expose items to examinees with ability levels no farther away

than two units from the difficulty parameter. We chose these ten items to

be representative of the range of discrimination parameters and the three

regions B1, B2, and B3 defined in the equations (A-i, A-2, and A-3).
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By symmetry arguments, the simulations results apply to Items with

difficulty parameters obtained from the difficulty parameters of the items in

Table I reflected around zero. The design space would be obtained also

by reflecting the design space in Table C-1 around zero.

Results and Conclusion

The relative efficiencies of sequentially constructed designs are

presented in Tables 4 and 5. The overall Impression conveyed by the

tables is that sequentially constructed designs are reasonable designs for

item calibration. Indeed, the lowest efficiency is 0.77 for N - 200, and 0.72

for N 400.

Performance of modified MLE's. Generally speaking, the regular

MLE was superior to the modified one. The exceptions were for the large

discrimination parameter in two cases: a) with n = 15, N = 180, In Table 3;

and b) with n = 3, N = 402, In Table 4.

Large reliability ratios tend to degrade the performance of the MLE:

the more error in the estimated ability level, the worse the MLE performs.

Even when there Is no error in the ability level, the modified MLE does

worse than the unmodified MLE for n = 15 and the Item with the large

discrimination parameter (Table 3). This is because the performance of

any design, that Is not optimal, is poor; and, the Instability of the modified

MLE exacerbates this problem, especially when any one subsample

represents a high proportion of the overall design.

Effects of sample size. It appears that n = 5 is superior to 3 in Tables

3 and 4. However too large a subsample size is bad, as seen with n = 15

in Table 3. Because our simulation ran too long, we do not report results

for n = 15 and N = 400. As expected, the greater the overall sample size,
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the higher relative efficiency attained with the sequentially constructed

designs.

It was thought that the modified MLE would compensate better than

It did for the error in the ability level for the effective sample sizes S, and

overall sample size N, that we studied. However, asymptotic theory

suggests that the modification becomes worthwhile at a larger sample size

than N = 400. Another possible reason for these poor results Is that the

effective sample sizes studied were too small. In Table 4, we see that the

modified and regular maximum estimators are operatively equal for S = 30.

We do not present the results here but we have studied S = 40, 50, ..., 100.

We found that modified MLE does only slightly better than the regular

MLE.

Laying the performance of the modification aside, these results

compare extremely well with random-seeding of items. We saw that the

best that random-seeding did was 27% efficiency, whereas, the worst that

sequential designs did is about 95% efficiency with the best configuration:

no modification, n = 5, and N = 400 (Table 4).

In conclusion, these results suggest that one should Implement

sequentially constructed designs utilizing the regular MLE, a subsample

size of 5, and overall sample size of N = 400. This configuration performs

well even for Items with large discrimination parameters and on-line tests

with low reliability.

Discussion

ModtIf.iMiE. Let us assume that we have a consistent estimator

of ft. The relative efficiency of a sequential design approaches unity as the



Optimal Sequential Designs for Item Estimation

Page 29

total sample size Increases, or in other words, a sequential design Is

asymptotically optimal (Wu, 1985). However, the rate at which the relative

efficiency approaches one is important. As we have seen, an instable

estimator results in inefficient designs for moderate sample sizes. The

theory on this topic falls in the general area of second order efficiency;

however, the theory is incomplete for sequential designs.

Designs for simultaneous item estimation. Practical constraints may

dictate that designs for several items shall be constructed where Items must

"compete" with each other for a /mitebumber of examinees with optimal

ability levels. In addition, frugal utilization of each calibration session

requires that all the examinees be used. The mathematical programming

model for this situation is as follows: Let I = (x1: I = 1 ,...,r) be a finite

collection of candidate ability levels; mi denote the number of examinees

with ability x. available; and m, = n. The "plus" notation denotes

summation over the index. Suppose we are to calibrate c items, each with

response function Pj(x;#), j = 1 ,...,c. A collection of c, nj-point, designs for

simultaneously calibrating c items is (nij, non-negative integers, where nj

= nj, j = 1 ,...,c; n, = n. Associate with each nj-point design a probability

distribution on X: nj, which puts probability pij = nij/nj at x. Let Mj(7nj;O)

denote the information matrix associated with Item J. A mathematical

programming model Is:
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C n .

max n log det(Mj(Qnj;P)) (27)

such that

ni = mi, I l ,....,r; (28)

n i = n, j= 1,...,c; (29)

m.= n = n (30)

nij k 0, integer. (31)

The criterion (27) Is related to, but not equal to, D-optimallty; that is

to say the criterion does not correspond to the joint confidence ellipsoid of

all c sets of Item parameters. Another criterion is the simple summation of

all c Information matrices; however, this criterion Is not equal to the

criterion of D-optimality. Because the "log-det" function is strictly concave

over the space of non-negative definite matrices, the criterion (27) Is a

lower bound to the logarithm of the weighted sum of c information matrices,

with weights n/n.

The solution to the problem (27) - (31) may be solved with the

branch-and-bound technique. The values for mi In constraint (28) are

uncontrolled, resulting from expected flows of examinees at Individual

testing sites. Constraint (29) enables the practitioner to control the

proportion of the total observations allocated to any one item. This Is an

important degree of freedom as one may desire to spend less observations

on Items with imprecise estimates of dlfficulty relative to the other Items.

Constraint (30) Is also uncontrolled and determined by the flow of

examinees.

On-line Item seedi3ng and non-interference with the testing of the

subjects' ablilny level. To limit the exposure of examinees to inappropriate
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Items, one may either constrain the design space, add more constraints to

the mathemical programming problem, or reformulate the information

matrix. Our simulations limited the design space to the Interval [-1, +1]. If

most experimental items have difficulty in the range -1 to +1, then this

design space makes it unlikely that examinees are exposed to an Item more

than two units away from their ability. Other Intervals could also be used.

If a range of item difficulties, wider than [-1, +1], is anticipated, then

one could allow the candidate design points to be spread out in the

appropriate Interval, and also place constraints on the distance between

the item difficulty and the candidate design points. We propose the

constraint on each design point: {P(x;#)[1 - P(xj;#)J}h 2 v, where v and h

are non-negative fixed constants. The effect of this constraint is to

eliminate certain candidate design points that are outlying relative to the

item difficulty.

Another approach is to modify the Fisher information matrix so that

the D-optimal design points are not the extreme points in the design space.

An easy modification is:

.r ap( o P( ;)M(x;r,h) = - . ;#;) ) ap#()T
-2+h .;p 8-0(32)

i=1

where h Is a non-negative constant. The Integer programming problems

using this criterion is solvable with the methods proposed here.
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Appendix A

Approximate Optimal Designs for the 2PL Model

Suppose we let the design space X be [-1, +11 and it is known that

0 0,/61 > 0. Ford (1976) has shown that for the two parameter logistic

function the approximate optimal design puts one-halt the mass at one

point and one-half at another point. These two points depend on the value

of the item parameter vector, P in the following way.
z+l1

Let c be the positive solution of the equation ez = + c 1.5434.

Also let

B1 = {0: 0 >0,6 1 >0,/61 - /i0 ;2!c) (A-1)

B? = {0:/0 > 0,/ 1 > 0,/1 - + < c, exp(1o + 01) > (A-2)

B3 = {ft: 00 > 0,/ 6 >O, 61 - 80 < c, exp(P 0 + #1) <!5 (A-3)

Then

c - 0 -c - 10
(i) if/ e B1, the support points are -#, I i, P (A-4)

(ii) If P e B2 , they are -1 and xu where xu Is the solution
2+ (x+ 1)61'

(ii) If 0 e B3 , they are -1 and +1. (A-6)

This rather complicated design can be roughly summarized by saying the

more steep the response curve is, the more the support points are

squeezed to the center of the design space; the more fiat, and hence linear,
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the response curve Is, the more the support points are pushed to the

extremes of the design space.
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Appendix B

The Branch-and-Bound Procedure

Let xi, i = 1,2, .. ,r denote candidate design points. The N-point D-

optimal design problem is to place N observations at the r design points so

as to maximize det{M(1N;0)}. There are r+N1 possible designs, some

leading to a zero determinate. Instead of performing an exhaustive search

over all possible designs, it is possible to partition the set of designs and to

perform searches over a much smaller set of designs. Let I = (I1 ,12 -i..r)

and u = (u1 ,u2 ,...,ur) be collections of non-negative integers less than or

equal to N. The maximum determinate exceeds or equals the solution to:

maximize det{M(QN; 8)}

r

such that -ni = N,
i= 1

Ii !5 n i !5u pi i =  1 ,2 ,...,r.( -)

We call this maximization a node The original maximization is

called the rootlnodewtth all Ii = 0 and ui = N. The collection (B-I) of

designs Is further subdivided into two nonempty partitions, as follows:

nj =lj, Ii :9n i 5 u i, i x (B-2)

Ij + 1<5nj :9upj, li5ni :5up, i j (B-3)

where the way j will be chosen is described shortly. Thus we create two

nodes by replacing (B-i) with either (B-2) or (B-3).
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Thus every node has either zero or two branches leading from it,

creating a binarybee with the [r+N l N-point designs located at the

extreme nodes. We guide the search for the optimal design by going up

the tree along branches that are not suboptimal.

We avoid suboptimal branches by calculating a bound on

det{M(QN;P)) over all designs leading from a common node (I,u) on the

branch as follows. Define

r
No= Ii  (B-4)

1=1

r aP(xil#) ap(x,#.)T
M(I,s;#) N, (I + C)a -2(X,,)(

Ni=1 a f
aP(xi,#j T  OP9xi,.8)

d(xi,l,;P) = o-=(xiB. -1 Px ) M (,e;#) 8#3x(B)6)

where E is a small positive number to ensure that M(I,e;O) is positive

definite.

The determinant of the information matrix where the design satisfies

the constraints (B-1) satisfies the following bound (Welch, 1982)

det(MQ7N;i)) : det{M(I,e;)H{1 + d(l,;}))N'N' (B-7)

where
max

ap,;p) = i=1 to r d(xi,l,e;) (B-8)
1i < Ui

The value for j that is used to branch at the node Is the value of I for

which the maximum d(xil,;#) is attained.
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Appendix C

The Snuential Deign Ajgorthm

Step 0

a) Choose S, the effective sample size for switching from the regular
MLE to the modified estimator.

b) Choose N0 0 the maximum number of observations to be gathered via

the sequential design algorithm.

c) Choose Kxx, the test reliability ratio.

d) If this is a simulation choose the Item response model and its
parameter vector P.

e) Choose n, the sample size for the subdesign. Set N = n Initially.

t) Choose X , i= 1 ,...,n, an initial design.

Step 1

a) Pool the. design points X,, I = 1 ,...,n with all prior design points.

b) Determine a o< for the set of pooled design points.

c) Set ae. = o(1 - KXX).

d) If this Is a simulation, randomly generate x, = X, + e, where el

follows N(O,a@0), I = 1,...,n. If this is part of a real time system, find n

examinees with estimated ability level X, and measurement error

a@0, I= ... ,n.

e) If this Is a simulation, obtain n random responses ui at latent ability

x,, according to the true item response mcdel Pr{ui = 1 Ixr,}. If this

Is a part of a real time system, obtain a response to the item from
each of the chosen n examinees.
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f) Pool u1 , with all prior data, i = 1 ,...,n.

Step 2

a) Find P for the current design, P =N- 1 7 u,.
all data

b) Find the effective sample size, N'= NP(1-P).

c) If N'> S, obtain modified maximum likelihood estimates of the item
parameters. Otherwise obtain regular maximum likelihood estimates
of the item parameters.

Step 3

a) N=N+n

b) If N > N0 , stop. Otherwise continue.

c) Based on the current Item parameter estimates, find X1 ...,Xn I the

exact n-point optimal design using branch-and-bound and the
criterion of D-optimality.

d) Go to step (1.a).
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Table 1

Ontimal Designs on [-1, +11 for Two-Parameter Logistic Items

Two-Parameter Logistic Response Function

Low Medium High

a, b 1.2030, -3459 1.7326, -.2402 23851, -.1745

x -1 1 -1 .73 -.82 .47
70) .5 .5 .5 .5 .5 .5

AX 0 -.135 -.175
Oxx 1 .748 .416
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Table 2
Relive Efficiencies for a Normal N(O, 1.7) and a Rectangular U[-1, +1]

0"sin In EstiMating Two-Parameter Logistic items

Two-Parameter Logistic Response Function (a,b)

LOW Medium High

Design 1.2030, -.3459 1.7326, -.2402 2.3851, -.1745

N( 0, 1.7) .2028 .2252 .2356
U(-1, +1) .0859 .1194 .1544
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Table 3
Relative Efficiencies of Seouental Designs N - 200

Magnitude of Discrimination Parameter

Small Medium Large

Effective Sample Size§

Reliability 1 cc 1 co 1

n = 3, N =198

.85 .96 .98 .90 .95 .89 .86

.90 .98 .99 .87 .95 .79 .87

.95 .98 .99 .93 .96 .80 88
1.0 .99 .99 .93 .93 .89 .89

n = 5, N =200

.85 .95 .98 .88 .97 .89 .90
.90 .95 .98 86 .97 .88 .91
.95 .96 .98 .96 .95 .90 .91
1.0 .98 .98 .95 .95 .91 .91

n = 15, N =180

.85 .99 1.0 .94 .95 .86 .80

.90 1.0 1.0 .90 .93 .87 .77

.95 1.0 1.0 .91 .93 .85 .77
1.0 1.0 1.0 .93 .93 .85 .77

§"" means the effective sample size was so large that the regular M.L.E. was
used always.
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Table 4

Relative Efficiencies of Seauential Deslns N - 400

Magnitude of Discrimination Parameter

Small Medium Laige

Effective Sample Size§

Rel 1 15 30 co 1 15 30 c 1 15 30 co

n =3, N =402

.75 .95 .96 .99 .99 .73 .95 .94 .97 .91 .91 .93 .89

.80 .97 .96 .98 .98 .72 .95 .95 .97 .92 .94 .95 .92

.85 .98 .95 .98 .98 .85 .96 .96 .97 .93 .93 .94 .91

n =5,N=400

.75 .82 .97 .98 .99 .77 .97 .98 .98 .91 .91 .94 .95

.80 .92 .99 .99 .99 .84 .97 .97 .98 .89 .89 .94 .95

.85 .97 .97 .99 .99 .93 .97 .98 .98 .90 .90 .94 .95

§"C" means the effective sample size was so large that the regular M.L.E. was
used always.
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Table C-1
fandjdM Ability Levels

Support Points Associated Items

Pair Number Left Right a b

1 -1.000 1.0000 1.2030 -.3459
2 -.9325 .9925 1.3922 -.2989
3 -.8735 .8529 1.5056 -.2764
4 -.8216 .7315 1.6191 -.2570
5 -.7755 .6371 1.7326 -.2402
6 -.7343 .5753 1.8461 -.2254
7 -.6972 .5364 1.9595 -.2124
8 -.6637 .5025 2.1014 -.1980
9 -.6333 .4726 2.2432 -.1855
10 -.6055 .4461 2.3851 -.1745
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Figure Caption

igure. Flow of tasks for sequentially constructing a design for non-
linear response models.
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